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Addendum et Erratum 

Ligand Field Distortion Parameters 

Bryan R. Hollebone and J. C. Donini 

Theoret. China. Acta (Bed.) 39, 33 (1975) 

The original publication [1] did not demonstrate the derivations of Eqs. (7) and (8). 
These are given here for completeness and to correct a coefficient error in the 
expansion of (7). The ligand field perturbation Hamiltonian can be derived from the 
spherical harmonic addition theorem and is of form: 

n = 0  m = --r/ 

4~r ~ yn  
2 n +  1 ~ >  +1 yn:  . m, O) 

In a finite group G representing the physical environment this can be rewritten as a sum 
over the number of fully symmetric A 1 components projected from the spherical 
harmonics: 

2 ~ 2n47r+ 1 rr-~+ VG = 1 o~A ~ �9 oLA 1 

,,q=o ~ = 1  

(2) 

In the case o f d  electrons in an octahedral field n = 4, et = 1 

4n Ze2r 4 
V oh = -9 r~ > A g " A1 (3) 

Expanding the A~ tensor component of an octahedron in terms of spherical harmonics 
of order 4 yields: 

_ 4rr Ze2r~ 7 y ;  + (Y21 + Y4-4) A 1 
vo. 9 rr 

- 4 1 r Z e 2 F 4 [ ~ 2 ( 9  a s ~ 1 ~ 8  (8(2)+3(4)))  

+ 5 

\~/2a" d 128~/ 2 1 
(4) 
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after substitution of ligand positions in a ligand field approximation. On simplification 
this becomes: 

4~Ze ~74 V~ V~ 
Voh = 9 X/~ ~ ~ a s (48) A 1 

Ze2 r 4 
-24~/3 a s (48)A1 

2 v ~  ZeZr 4 
v~ a s A~ (S) 

the remaining A 1 representing the one-electron operator this expression Expanding 
yields: 

2 ~ ZeZr 4 
- - 4 ) 1  (6)  Voh ~ a s [ v ~  Y~ + ~  (Y~ + r 4 

The conventional form of the operator uses an unnormalized linear combination of 
spherical harmonics and thus: 

2 V ~  Ze 2~./-v- 

7 ~ Ze 2 r 4 
- 3 a s [y4 +V/-~(y4 + y4_4)] (7) 

which is the conventional form. Instead of completing this simplification, the expansion 
of (4) may be retained during the expansion of the second A1 component in (6). Then: 

4rrZe2r4 s 4 y4_4)1. [',/~2 Y4+V/~4(Y4 + Y4-4)1 
Voh- 9 a s [ ~  Ya +x/'-~(Y4 + 

This simplifies using (1) to: 

47r Ze 2 
VOh=--9 a s [~v4*v4-~ s--tv*4Y4 + ~ o ' 2 4 , - 4  - 

4~ZeZ~[ 1 ~ 1 ~ ( 7 ] ( 8 ( 2 )  3(4)~v4 
Voh-9  a s ~ n  \ 1 2 ] \  a s + b s ]--o 

1 1 ~ [ 5 '  + 4 y4_4)] 

4rcZeZ~ __1 ~ ~ [  / 7 / 8 ( 2 )  3(4)] 
= - 9 - a  s V ~ ' ~ / 1 2 8 ' ~ / 1 2 [ ~ 1 2 ~  as +__ffi_]y4 

Sx/5 / 4 Y4_4) ] 

_ ~  2~[  fT /16+l~2~y4 5~r  4 4 

which is what Eq. (7a) of paper shouM be. 
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The reparametrization of Eqs. (7a) and (7b) to yield Eq. (8) is carried out most easily 
as a comparison of s~:rong and weak field formulations of the tetragonal Hamiltonian. 

Let, in the strong field model: 

PIAlg[ D4h = DQ ] A l g 0  [Oh + DT[EgO [Oh (9a) 

In a weak field model; 

y4o] + ~2P4 ] (y4 + y4_4)] (9b) P[Alg[D4h ~ P o l  

Equating these two expressions: 
1 

OO[AlgO[o h +DT[EgOIoh =Po[ r41 + ~P4I (Y~ + y44)[ 

= v/~DQI Y~I + v/~2~DQt(Y'~ + y4_4)1 
+ x/-11~OZ[ ](41 - X/~42~DT[ (y4 + Y44) [ (10) 

by expansion of the totally symmetric linear combinations of [Alg0 lob and the anti- 
symmetric combination IEgO [Oh" Now equating terms of common harmonics: 

Po l ra l = x/-~ DQ I Y~ I + v~2 DTI y4ol 
and 

1 
v~P4 [(Y] + Y4--4) 1 = V42~4DQI(Y 4 + Y4-4)1 + V~2~DTI (y4 + y4_4)1 (1 1) 

Solving for DQ and DT: 

DO = .v/~I~ P 4 + Vi~21~ Po 

DT= ~1~P4 + 'v/~ Po (12) 
If these expressions are expanded by substitution of ligand positions where 

4rr z..-'g ~ / 9 - / 1 6  12~ 
Po = r Ze r ~/~7~/~2-~t~g+- ~ ) 

4rrze2- ~ ~ ~ 3~5{4 ~g5) + 

g 

then substitution yields: 

4~rZe2~ ~ / -~ - [  /-~-7{16 121+ ~ 3~5{4 

- 1 9 7 [16 + 1 2 + 2 0 ]  
r 4 - -  ~ - -  

9 [a s b s b-5 J 
4rr 2~ /q- /9 -  /~-  1 6 [ 1 +  2] 

= r Zer  ,/2-~J~2-8 ~ / ~ (  )[a g b--5] 

which except for (4u/9) is Eq. (8a). 

(13) 

(14) 
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The reformulation of this equation to (15) and (25) involved two errors in the paper. 
Thus by substitution of (12) of the paper into the equation above: 

47rZe2~ ~ ]Y-~[ /r~-7 t8(na)(z ) 
(DQ) 4 

24(nE)(x)(tan20) 3(nE)(x) 
- -  (a cosec 0)4 +(acosecO) 4 ] 

+ d ~-~4 -~- \(a c--~sec ~-~4 ] j (15) 

in which the cotan 0 function is replaced by a tan 0 function, implying projection onto 
the equatorial plane, and the final term is positive not negative. The simplified form of 
(15) then becomes: 

4zrZeZ'~ /-1 [9-  16 r (z) (x) j 
(DQ)'= 9 a d2-~/1~8 ( ) [ ( a s e c 0 )  4 (a cosec 0)4j (16) 

After simplification Eq. (15) of the paper becomes: 

2X/~ Zdr -~ [. (z) (x) ] (17) 
( D Q h  - x/3 a [(a sec 0) 4 (a cosec 0) 4 

and (16) is 

(DQ)'=-~-i-fi-+ 3 ~  a 0sec0)4 0cosec0) 4 

Identical alterations should be made to Eqs. (25) for consistency, the new form of (25) 
is: 

9(2n 3 ZeZ~ / ~  /~--[ /~{8(nA)(Z) 

24(nE)(x)(tanZO) 3(nE)(X ) ~ 21~ ~ [2(nR)(x) tan 0]] 
- (a cosec 0)4 + (a c--~sec 0-)4 ) + ~/5-4 X/4' l (a c--~sec 0-~ ) ] 

g~]g ~ ~ '[i~sec0)4-i~cosec0) ~ 

As is clearly apparent, these expansions give the expected: 

(DQ)3 = -'}(DQ)4 (20) 
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